
The Apparent Mystery of the Electron: 
 

There is no mystery! The electron can be physically understood!  
 

Since the middle of the 1920s physicists have been struggling to understand the 
electron.  
 
From experiments it was concluded that the electron is a structureless, point-like 
object, whose entire mass is concentrated in its extensionless centre. On the other 
hand the electron displays properties which normally result from an extended 
structure, namely angular momentum (spin), a magnetic moment, and some sort of an 
internal oscillation.  
 
In 1928, when Paul Dirac presented the wave function of the electron (the “Dirac 
equation”), it became obvious that there must be not only an internal oscillation but 
also some internal motion at the speed of light. When Erwin Schrödinger found this as 
a consequence of the Dirac equation, he gave the phenomenon the German name 
“Zitterbewegung”, which means some sort of poorly defined oscillation. 
 
Subsequently physicists attributed this intrinsic contradiction between the electron’s 
different properties to the common-sense view that the electron is subject to quantum 
mechanics and as such not accessible to the human imagination. 
 
 
However, a solution does exist, whose understanding relies on the application of the 
classical laws of physics and which is free of contradictions: if the electron is 
assumed to be made up of two massless constituent particles, then this assumption 
correctly predicts the experimental results. It provides the correct relationship 
between the parameters of the electron: its mass, its constant angular momentum 
(spin), and its magnetic moment.  
 
The assumption made above has been generalised for all elementary particles as a 
physical model called the “Basic Particle Model”. 
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1 Introduction 
 
The way to understand the electron classically is to accept that the electron has an 
extension, as assumed by the Basic Particle Model, and is not point-like, as stated by 
quantum mechanics. 
 
According to the Basic Particle Model every elementary particle is made up of 2 massless 
constituent particles, which orbit each other at the speed of light c. Their orbital frequency is 
the de Broglie frequency (Figure 1.1). The mass of the entire particle follows from the fact 
that it has extension. 
 

 
 

Mass, m= 0 
 

Orbiting at de Broglie frequency 
 

 
 

 
 

Figure 1.1: Structure of an elementary particle 
 
 
2 General Particle Properties 

2.1 The Mass of the Electron 

The mass of the electron follows from the general fact that every extended object necessarily 
displays inertial behaviour. This is the mass mechanism of elementary particles. Due to this 
mechanism, the mass m of an elementary particle is generally described by the equation 

Rc
m

⋅
=

h
 (2.1) 

where  is the reduced Planck constant, c the speed of light and R the radius of the particle.  h
 
The above formula (2.1) is valid for all elementary particles if their electric charge is 
neglected. However, as the electron does have an electric charge, the result given by (2.1) 
has to be refined by adding a small correction factor (present in the Landé factor). This 
correction is calculated in Appendix B. 
 
In the following we will refer to the general deduction of the particle properties, particularly 
the mass as given in the origin of mass. In addition to that deduction, this site will in particular 
deal with the properties of the electron that are caused by the presence of an electric charge. 
 
 

2.2 The Magnetic Moment 

2.2.1 The Basic Calculation 

The assumption of an extended electron helps us to understand the magnetic moment using 
a classical view.  

According to classical electrodynamics, the magnetic moment μ  of a current loop is: 

2Ri ⋅⋅= πμ . (2.2) 

The current i flowing in a particle having one elementary charge e0 moving at speed c is 
simply:  
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ν
200  (2.3) 

with ν being the orbital frequency within the particle.  
 
Combining equations (2.2) and (2.3) we get: 

2
0 Rec ⋅⋅

=μ . (2.4) 

If R is now inserted from the mass formula (2.1), the magnetic moment turns out to be 

m
e0

2
⋅=

hμ . (2.5) 

For the electron, this is the 'Bohr magneton'. 
 
Remark: 
Please note that this important equation has been deduced here by classical means. 
Historically, some attempts to deduce the magnetic moment of the electron by classical 
means were made in the first half of the 20th century. These attempted deductions 
exclusively used the electromagnetic energy within the electron in order to find a relationship 
between its magnetic moment and its mass. The result of this calculation was wrong by a 
factor of typically >300. Later the correct relationship was provided by the Dirac equation of 
the electron. From this success it was concluded that the electron can be correctly 
understood and described only through quantum mechanics. - The success of the above 
classical deduction follows from the assumption that the force within the particle is primarily 
the strong force.  
 
Eq. (2.1) can be used to calculate the size of the electron numerically. 
 
If the parameters  

kgm e
311011.9 −⋅=  for the mass of the electron 

smc /10998.2 8⋅=  
2341005461 skgm. ⋅⋅= −h   

are inserted in eq. (2.1), the result for the electron is 

mR el
131086.3 −⋅= . 

This is an unfamiliar result because the literature states that experiments rule out any 
extension of this magnitude. However this apparent conflict does not in fact exist, as is 
explained below.  
 
Remark:  
Erwin Schrödinger analysed the Dirac equation for the electron in 1930 [1]. Among other 
results, this analysis yielded an electron radius of approx. 4*10-13 m, which agrees with the 
above result. 
 
If the mass of the electron is inserted in eq. (2.5), it yields the correct magnetic moment of 
the Bohr magneton  

224102739 mAmp.el ∗⋅= −μ  (2.6) 

 
 
 



2.2.2 The Correction for the Electric Influence 
 
As mentioned above, the magnetic moment of the electron is not exactly equal to the Bohr 
magneton but slightly greater, by a factor of approx. 10-3. Conventional physics (QED) 
attributes this difference to vacuum polarization effects around the electron.  
 
However, if the electric charge of the electron is taken into account, the radius of the electron 
is slightly larger than that caused by the strong force. The reason for this is presented in 
detail in Appendix B. - When this correction is used in the above calculation, we arrive at a 
similar correction to that performed by Julian Schwinger in 1948 using “vacuum polarization” 
[2]. 
 
It may be conjectured that any use of “vacuum polarization” or virtual particles is 
unnecessary if the Basic Particle Model is used; the Landé factor can be derived without 
resorting to quantum mechanics. 
 

2.3 The Angular Momentum (Spin) 
Equation (2.2) can be rearranged to give 

h⋅=⋅⋅ 1cRm  (2.7) 

The left side is the formal definition of the angular momentum for v = c.  
 
The right side fulfils the expectation towards the spin of an elementary particle in so far as it is 
independent of any specific properties of the particle; so that its value is universal. 
 
The factor 1 on the right side however is unsatisfactory at first glance as the measured spin 
corresponds to a factor of ½. It should, however, not come as a surprise. Eq. (2.7) would 
represent the angular momentum of two objects orbiting each other, where each carries half of 
the classical mass of an electron.  
 
The configuration of the Basic Particle Model is, however, different in that the two objects 
(basic particles) do not have any classical mass. In addition, the field which enforces the 
continuous motion of the basic particles does not act on the basic particles tangentially, as 
would be the case with classical inertial mass, but rather at an angle which lies somewhere 
between the tangential and the radial direction.  
 
The resulting value of the angular inertia is caused by the fact that the speed of the orbiting 
basic particles and the speed at which the binding field is propagated are both c. The binding 
field arriving at a particle comes from a retarded position of the other particle and so from a 
direction, which is not tangential, as illustrated in figure 2.1. The effective component for the 
angular momentum reflects the factor of ½.  
 

 
 

Figure 2.1: The mechanism of angular momentum 
 
So the relation 

h⋅=⋅⋅ 21cRm  (2.8) 

becomes understandable. 



 
 
3 Conflicts with Views of Standard Physics 
 
3.1  The "Zitterbewegung"  
 
The results described above for the electron also conform - together with the other properties 
of the model - to the parameters resulting from the Dirac equation of the electron. Historically 
Erwin Schrödinger analysed the Dirac equation and coined the German term 
”Zitterbewegung” (meaning “trembling motion”) to describe the oscillation within the electron, 
which is in fact circular. 
 
This analysis has been giving rise to logical conflicts for more than 70 years: 
 
1. According to the Dirac equation the electron oscillates at the speed of light c. On the 

other hand the electron has a mass. By special relativity an object having mass can 
never move at the speed of light 

2. A single object which moves freely in space can never oscillate, because this would 
mean a permanent violation of the law of momentum. 

 
In the view of the Basic Particle Model these discrepancies disappear: 
 
1. Not the electron as a whole is oscillating but its constituents, the basic particles. These 

do not have any mass and can therefore move at the speed of light 
2. As there are two constituent particles, there is no violation of the law of momentum, if 

these orbit each other. 
 
However, there is an apparent discrepancy between the theoretical prediction and the 
experimental data for the electron: experiments seem to indicate that the electron does not 
have any further constituents and that its size is several orders of magnitude smaller than the 
value given above. - This discrepancy vanishes if the experiments are examined from the 
perspective of the Basic Particle Model, for the following reasons. 
 
To investigate whether the electron is made up of constituent particles, it was bombarded 
with other particles (e.g. electrons or protons) at high energy. The electron did not break 
apart, so it was concluded that it does not have constituent parts. However, the Basic 
Particle Model states that the constituents of the electron do not have a mass on their own. 
So even if one of the constituent particles is accelerated by any arbitrary amount, the other 
constituent particle can follow. There is not even any force acting on that constituent. So an 
electron can never break up. 
 

 
 

Figure 3.1: Experiment to break up an electron 
 
 
3.2 The Size of the Electron 
 
The investigation of the size of the electron is done by scattering the electron off a proton or 
another electron, for example, and investigating the angular distribution. If the Basic Particle 
Model is assumed for the electron, then only one of the constituents will be scattered. Such 



experiments are performed using highly relativistic electrons. Due to the time dilation the 
constituents of the electron will move along a considerably stretched helix. One of the 
constituents will pass the external particle as a normal, point-sized particle. The other 
constituent will only participate indirectly in this scattering process in that it causes the inertial 
behaviour of the overall configuration (i.e. the electron). The scattering will therefore be 
similar to that of a particle with a point-like size but with the mass of the electron. - From this 
result it is conventionally deduced that the electron is point-sized. 
 
 

 
 

Figure 3.2: Experiment to determine the size of an electron 
 
 
From the above considerations it should be obvious that when the Basic Particle Model is 
applied to the electron, it does not contradict the experimental results. 
 

4 Summary 
The "Basic Particle Model" provides a model for the understanding of the electron (as well as 
of other leptons and also of quarks), which is based on classical physics and agrees with 
experiment. And this model provides the cause of relativity on a 'mechanistic' basis. 
 
Also the refinement of the magnetic moment represented by the Landé factor can be 
explained classically. 
 
 
 
NOTE: 
The concept of the "Basic Particle Model" of matter was first presented at the Spring 
Conference of the German Physical Society (Deutsche Physikalische Gesellschaft) on 24 
March 2000 in Dresden 
by Albrecht Giese. 
 
Comments are welcome to note@ag-physics.de.  
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Appendix A: The Mass of a Particle in General 
 
The mass equation in origin of mass was deduced on the assumption that the internal bond 
in an elementary particle is based only on the strong force. However, in order to understand 
the properties of the electron, the electric charge has to be taken into account too. 
 
Here we will briefly repeat the calculation using only the strong force, i.e. we will first 
calculate the mass of a particle without considering its electric charge. In order to follow the 
detailed derivation, please refer to origin of mass. 
 
In the case of a pair of particles bound purely by the strong interaction, the Basic Particle 
Model indicates that the binding force is given by the following formula describing a multi-
pole configuration:  

3
0

r
rr

SF
−

⋅−=  (A.1) 

or for the absolute magnitude 

3r
rSF Δ

⋅= , (A.2) 

where F is the force caused by the field acting on the partner particle; S is the strength of the 
field which acts here to bind the two particles, belonging to the strong force; r is the distance 
between the two particles; and r0 the equilibrium distance (corresponding to Δr = 0) at which 
the force disappears. 
 
For the corresponding shape of the potential, refer to fig. A.1. 
 
 
 

 
 

Figure A.1: Potential of the bond between basic particles making up an elementary 
particle 

  
 
If we only consider small accelerations, where ‘small’ means that during the time Δt (see 
below) the acceleration produces a change in velocity  Δv << c, then we can for these 
changes replace the actual distance r in the denominator of eqs. (A.1) and (A.2) by the 
equilibrium distance r0 . 
 
If one particle (e.g. B) is now accelerated at a constant rate in the direction of the bond, then 
for a time  

crt 0=Δ  (A.3) 
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after the start of the acceleration the other particle (A) will – due to the finite speed of light c - 
not receive any information about this change in position, and it will be held in its position by 
the original field. Then, after the initial period of Δt, particle A will also be accelerated 
constantly. From now, on the acceleration of particle A will follow the acceleration of particle 
B with this delay of Δt. This delay causes a constant displacement between the particles, 
which results in a constant force between them, given by (A.1). On the other hand, the 
current field of particle A will arrive at particle B after a further delay of Δt. 
 
Assuming a constant acceleration a, during this time 2Δt particle B will move a distance  

( ) 22
1 22

2
1 tatar Δ⋅⋅=Δ⋅⋅⋅=Δ , (A.4) 

which is now added to the equilibrium distance. Due to this distance Δr1, the retarding force 
acting on particle B in the direction of motion, Fdm , will have the value 

13
0

1 r
r

SFdm Δ⋅⋅= , (A.5) 

and so, substituting for Δr1 from (A.4) 

2
3

0

12 ta
r

SFdm Δ⋅⋅⋅⋅= . (A.6) 

Replacing Δt by r0 using the speed of light c (A.3) (i.e. with Δt=r0/c) yields    

2
0

112
cr

aSFdm ⋅⋅⋅⋅= . 

According to Newton’s definition, the quotient of F and a is the inertial mass m. So, 

aFm dmdm =  

where Fdm is the force in the direction of the acceleration and mdm the corresponding inertial 
mass. 
 
And therefore: 

2
0

112
cr

Smdm ⋅⋅⋅= . 

Returning to eq. (A.5) we note that the full force  

13
0

1 r
r

SFdm Δ⋅⋅=  

only acts if both the basic particles are positioned parallel to the direction of the applied 
force.  

 
We will now average the force over one circuit of the internal motion of the particle. 
This implies the assumption that the electron’s mass is measured using an acceleration 
perpendicular to the axis of the electron. 
 
The force changes in the course of the orbital motion and is given by  

ϕcosFF dmcir ⋅= . (A.7) 



where ϕ is the angle between (a) the direction of the binding force within the 
elementary particle and (b) the direction of acceleration. The average force is 
determined by integration: 
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dmeff FsinFddcosFF . (A.8) 

So the averaged, effective force is:   

13
0

12 r
r

SFeff Δ⋅⋅⋅=
π

. (A.9) 

Inserting Δr1  from eq. (A.4) now yields 

2
3

0

14 ta
r

SFeff Δ⋅⋅⋅⋅=
π

 (A.10) 

and with the time delay crt 0=Δ : (A.11) 

2
0

114
c

a
r

SFeff ⋅⋅⋅⋅=
π

 (A.12) 

and therefore: 

2
0

114
cr

S
a

Fm eff ⋅⋅⋅==
π

, (A.13) 

or, in terms of the radius R = r0/2 of the electron: 

2
112
cR

Sm ⋅⋅⋅=
π

. (A.14) 

 

We now determine S; (A.14) can be arranged as: 

2

2 π⋅⋅
=

RmcS .  

With the well known 

2mcE =    (also derived in Origin of Mass) this gives  

2
π
⋅⋅= RES . (A.15) 

Further we use: 

νhE =   

from the assumption that the orbital frequency is the de Broglie frequency.  

From the geometry of the circular motion we have 



R
c
π

ν
2

=   

from which it follows that 

R
c

R
chE ⋅=⋅= h

π2
1

 

Substituting this in eq (A.15): 

cS ⋅⋅= h
2
π

. (A.16) 

 
 
Appendix B: The Landé factor 
 
We shall now determine the influence of the electric charge, particularly its influence on 
the magnetic moment of the electron.  

Without electric charge, only considering the strong interaction, the binding force is given by  
eq. (A.1):  

( ) 3
0

r
rr

SrF
−

⋅−=   

where r0 is again the equivalence distance for F = 0. 

Now assuming two electric charges, e0/2 for each basic particle, the binding force changes 
to: 
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The electric charge causes a different equilibrium distance r = rz, for which the following must 
apply:  

( ) 0=zrF . (B.3) 

So it follows that for the new equilibrium distance: 
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To abbreviate this, we define 



0

2
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S
⋅=  (B.6) 

from which it follows that: 

ζ−
=

1
0rrz . (B.7) 

We can now write eq. (B.2) as 
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or with relation to rz, using eq. (B.7) 

( ) ( ) ⎟
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⎜
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SrF zζ , 

( ) ( ) 31
r

rrSrF z −⋅−⋅= ζ . (B.8) 

Next we will determine ζ. 

By definition: 

0

2
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S
⋅=   

and we have (A.15) 

h⋅= cS
2
π

   

and so 
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e
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ππε

ζ 2
16 0
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.  (B.9) 

We can now abbreviate this by using the definition of the fine structure constant: 

c
e

h

1
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2

⋅=
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α . (B.10) 

So we get 

π
αζ
2

= . (B.11) 



Remembering that according to eq. (B.7) the classical equation for the magnetic moment of a 
charge orbiting at a velocity c and at a radius of R is given by: 

2
0 Rec ⋅⋅

=μ  (B.12) 

we will now have to replace the initially determined radius R  by the corrected Rel (for the new 
equilibrium distance) to take into account the influence of the electric field: 

ζ−
=→

1
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This replacement gives us a corrected magnetic moment of 
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or, in terms of the Bohr magneton 

m
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(referring to (2.4) and (2.5)) we get 
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the latter being the Julian Schwinger’s result (1948). – The correction factor in (B.15) has a 
numerical value of: 

861
1

2
≈

π
α

. 

So the deviation of Schwinger’s result from our result above is approx. 10-6. - It should be 
noted that the original result of Schwinger deviates from the measured value also by approx. 
10-6. 

 

Conclusion: 

The Basic Particle Model is able to explain the Landé factor in a similar way to the new 
theoretical approach presented by J. Schwinger (a result for which he received the Nobel 
price in 1965). 

  


	  (2.7) 
	  (2.8) 

